
Summary results of the Universitat Oberta de

Catalunya (UOC)

Course

First of all, it is worth stressing that the UOC is a fully online university, therefore all its

courses are online. In order to perform the pilots for the QPED project, UOC chose one

course, specifically, M0.152 – Programming for bioinformatics (PB), which has 6 ECTS,

belongs to the Master’s degree in Bioinformatics and Biostatistics and has, on average,

200 students per semester. PB has two runs: the first one starts in the second half of

September and finishes at the end of January, whereas the second one starts in the

second half of March and finishes at the end of June. Likewise, PB has around 4-5 virtual

classrooms which each one has one different teacher who guides the learners and

grades the assignments.

PB is the first programming course for most of the students who are enrolled in. More

specifically, its table of contents includes:

 Introduction to Python

o Basic syntax

o First program

o

 Key concepts of Python

o Flow statements: conditionals and loops

o Functions

 Scientific libraries for Python

o Math libraries

o Visualization libraries

 DNA, RNA and sequences with Biopython

 Testing and software quality

o Unit tests

o Tests for bioinformatics problems

 Brief introduction to object-oriented programming.

Regarding the assessment policy, PB has 5 graded assignments (GA) that students

submit throughout the semester. Each assignment is a Jupyter Notebook with different

exercises that students must solve (Some of them are theoretical questions, but most of

them are coding problems). The final mark of the subject is calculated by using the

following formula: 10% GA1 + 10% GA2 + 30% GA3 + 25% GA4 + 20% GA5. The active

participation on the forums is 5%.

Baseline stage

Regarding the baseline, the course started on 16/02/22 and finished on 24/06/22. In

order to collect data, the common 4-point rubric created by the QPED group was used

for assessing assignments and the diagnostic test. In this regard, only the assignments

of one classroom (24 students) were graded by using the rubric (students were not

provided with the rubric scores). However, all the students (i.e. 144), regardless of the

classroom, performed the diagnostic test. The fifth assignment (i.e. GA5) was used as

diagnostic test, since it covered concepts related to testing. Finally, due to technical

problems, the questionnaire about students’ awareness of software quality was not sent.

Coursework

Firstly, it is worth stressing that GA1 is a simple activity that is used so that students get

familiar with the subject, the programming environment and Python. Therefore, this

activity may often have higher scores than the others.

“Output correctness” (i.e. the program behaves as expected when the input is correct)

and “program robustness” (i.e. the program does not crash/fail when the input is

incorrect) are the two items evaluated in most of the assignments and the ones, as it will

be shown, which obtained greater improvements. Other items –such as “modularity” and

“data type selection”– also improved, but to a lesser extent. For this reason, this short

report focuses on such two items (if you need more information, you can ask for the

extended version of this report).

As for “output correctness”, the figures show a stable trend throughout the assignments:

GA1 GA2 GA3 GA4

3p 4p 2p 3p 4p 2p 3p 4p 2p 3p 4p

22.7 77.3 4.8 42.9 52.4 4.5 50 45.5 20 35 45

Table 1. “Output correctness” in GA1-4 during the baseline stage. Percentage of students that achieved each score in

each assignment.

Regarding “program robustness”:

GA2 GA3 GA4

2p 3p 4p 2p 3p 4p 2p 3p 4p

9.5 47.6 42.9 4.5 59.1 36.4 30 40 30

Table 2. “Program robustness” in GA1-4 during the baseline stage. Percentage of students that achieved each score in

each assignment.

Diagnostic test

The diagnostic test was the last assignment of the course. Some exercises involved

creating tests, writing examples of tests cases (i.e. input-output).

Regarding the “Output correctness” item, the results were:

Diagnostic test (GA5)

1p 2p 3p 4p

2.6 15.8 29.8 51.8

Table 3. “Output correctness” in diagnostic test (GA5) during the baseline stage. Percentage of students that achieved

each score in each assignment.

As for “Program robustness”:

Diagnostic test (GA5)

1p 2p 3p 4p

2.6 17.5 34.2 45.6

Table 4. “Program robustness” in diagnostic test (GA5) during the baseline stage. Percentage of students that achieved

each score in each assignment.

Validation stage

During the validation phase, the course had few changes. In fact, only the four

assignments (GA1-GA4) changed, since they included the TILE approach. More

specifically, those exercises that asked students for coding provided learners with a few

tests created by using pytest. In some other cases, examples of input and expected

output were also given. Likewise, students had access to optional/complementary

exercises on Quarterfall platform.

222 students participated in the validation stage from 28/09/22 to 29/01/23. In order to

collect data, the common 4-point rubric created by the QPED group was used for

assessing assignments and the diagnostic test. Once again, the fifth assignment (i.e.

GA5) was used as diagnostic test. Likewise, the questionnaire about students’

awareness of software quality was sent to all the students.

Coursework

The results for “output correctness” were:

GA1 GA2 GA3 GA4

1p 2p 3p 4p 1p 2p 3p 4p 1p 3p 4p 1p 2p 3p 4p

1.0 2.0 17.7 79.3 3.6 8.6 22.3 65.5 0.5 15.9 83.6 1.1 8.5 26.1 64.4

Table 5. “Output correctness” in GA1-4 during the validation stage. Percentage of students that achieved each score in

each assignment.

As for “program robustness”:

GA2 GA3 GA4

1p 2p 3p 4p 1p 3p 4p 1p 2p 3p 4p

3 9.1 15.2 72.6 0.5 16.4 83.1 0.5 11.2 25.1 63.1

Table 6. “Program robustness” in GA1-4 during the validation stage. Percentage of students that achieved each score in

each assignment.

Diagnostic test

As for “output correctness”:

Diagnostic test (GA5)

1p 2p 3p 4p

2.2 8.1 15.6 74.2

Table 7. “Output correctness” in diagnostic test (GA5) during the validation stage. Percentage of students that achieved

each score in each assignment.

Regarding “program robustness”:

Diagnostic test (GA5)

1p 2p 3p 4p

1.6 8.1 16.1 74.2

Table 8. “Program robustness” in diagnostic test (GA5) during the validation stage. Percentage of students that

achieved each score in each assignment.

Questionnaire

50 students filled in the questionnaire at the end of the course. They were enrolled in

UOC for an average of 1.5 semesters. 54% of the participants stated that they did not

have prior experience on programming before starting the semester. The rest (46%) had

some basic skills; we say “basic”, because if they had been advanced, the course would

have been recognized.

A set of questions asked students (using a 5-point Liker scale) how capable they felt of

performing a series of programming tasks after passing the course. As shown in Figure

1, most of students felt very or totally capable of performing the different tasks.

Figure 1. Percentage of answers for “How well do you think you are able…?”

Another block of questions was related to perception, namely to what extend students

agreed with different statements on testing. The responses (see Figure 2) reveal that the

TILE approach really contributes to a deep awareness of the importance of testing.

Figure 2. Percentage of answers for “level of agreement with the following statements”.

A closer analysis, which distinguishes responses according to the students’ previous

programming experience, shows those students with experience thought testing is as

0 4 8

52

36

0 4
14

56

26

0
6

18

50

26

0 2
12

48
38

0 2
10

46 42

0
10
20
30
40
50
60
70
80
90

100

N
o

t
at

 a
ll

ab
le

So
m

ew
h

at
 a

b
le

N
e

it
h

er
 a

b
le

 o
r

n
o

t
ab

le

V
er

y
ab

le

Ex
tr

e
m

el
y

ab
le

N
o

t
at

 a
ll

ab
le

So
m

ew
h

at
 a

b
le

N
e

it
h

er
 a

b
le

 o
r

n
o

t
ab

le

V
er

y
ab

le

Ex
tr

e
m

el
y

ab
le

N
o

t
at

 a
ll

ab
le

So
m

ew
h

at
 a

b
le

N
e

it
h

er
 a

b
le

 o
r

n
o

t
ab

le

V
er

y
ab

le

Ex
tr

e
m

el
y

ab
le

N
o

t
at

 a
ll

ab
le

So
m

ew
h

at
 a

b
le

N
e

it
h

er
 a

b
le

 o
r

n
o

t
ab

le

V
er

y
ab

le

Ex
tr

e
m

el
y

ab
le

N
o

t
at

 a
ll

ab
le

So
m

ew
h

at
 a

b
le

N
e

it
h

er
 a

b
le

 o
r

n
o

t
ab

le

V
er

y
ab

le

Ex
tr

e
m

el
y

ab
le

to write correct
programs for a given

task

to find errors in the
code and correct

them easily

to effectively test my
programmes for

errors

to write code that
others can easily read

to reuse code for use
in new projects

0 0 2

24

74

0 2 4

22

72

0 0 4

28

68

0
10
20
30
40
50
60
70
80

St
ro

n
gl

y
d

is
ag

re
e

D
is

ag
re

e

N
e

it
h

er
 a

gr
e

e
o

r
d

is
ag

re
e A
gr

ee

St
ro

n
gl

y
ag

re
e

St
ro

n
gl

y
d

is
ag

re
e

D
is

ag
re

e

N
e

it
h

er
 a

gr
e

e
o

r
d

is
ag

re
e A
gr

ee

St
ro

n
gl

y
ag

re
e

St
ro

n
gl

y
d

is
ag

re
e

D
is

ag
re

e

N
e

it
h

er
 a

gr
e

e
o

r
d

is
ag

re
e A
gr

ee

St
ro

n
gl

y
ag

re
e

The use of tests improves the
quality of the programmes

Testing is as important as
programming

Readability of programmes is just
as important as a programme

performing correctly.

important as programming. This may occur because the experience helped them to

notice that programs must be tested properly before handing them in. However, both

groups agreed with the fact that tests improve the quality of the programs.

Figure 3. Percentage of agreement with the importance of testing and readability.

The questionnaire also asked about students’ programming habits. Figure 4 shows the

percentage of students with and without previous experience that scored 4 (rather much)

or 5 (very much). As seen, all students are used to running different test cases, it may

be due to the fact that the teaching staff, thanks to the TILE approach, has always

provided students with different tests cases (i.e. happy and unhappy paths). However,

students that have faced more programming tasks are more aware of the importance of

testing code thoughtfully. This may mean that students with non-experience only test the

most important functions or parts of the program.

Figure 4. Percentage of students that testing code and use different test cases rather much or very much.

Finally, students were asked about the use of the debugger and tools to check

conventions and styles (e.g. flake8). Unfortunately, the results (see Figure 5) show that

most of the students did not use such tools. So, these are important issues related to

quality software that the QPED project has not been able to address. Therefore, further

work must be done.

0 0 3,7
22,2

74,1

0 3,7 7,4

29,6

59,3

0 0
7,4

22,2

70,4

0 0 0

26,1

73,9

0 0 0
13

87

0 0 0

34,8

65,2

0
10
20
30
40
50
60
70
80
90

100
St

ro
n

gl
y

d
is

ag
re

e

D
is

ag
re

e

N
e

it
h

er
 a

gr
e

e
o

r
d

is
ag

re
e

A
gr

ee

St
ro

n
gl

y
ag

re
e

St
ro

n
gl

y
d

is
ag

re
e

D
is

ag
re

e

N
e

it
h

er
 a

gr
e

e
o

r
d

is
ag

re
e

A
gr

ee

St
ro

n
gl

y
ag

re
e

St
ro

n
gl

y
d

is
ag

re
e

D
is

ag
re

e

N
e

it
h

er
 a

gr
e

e
o

r
d

is
ag

re
e

A
gr

ee

St
ro

n
gl

y
ag

re
e

The use of tests improves the
quality of the programmes

Testing is as important as
programming

Readability of programmes is just
as important as a programme

performing correctly.

No - previous programming experience Yes - previous programming experience

70,3
77,8

95,6
86,9

0

20

40

60

80

100

Testing code thoughtfully Using different test cases

Non-experience Experience

Figure 5. Percentage of students that uses debugger and tools to check code conventions and styles.

Comparison between the baseline and the validation

Regarding “output correctness”, we can see the following improvements (in the form of

increases) in the score equal to 4:

GA1 GA2 GA3 GA4
GA5

(diagnostic test)

4p 4p 4p 4p 4p

+2 +13.1 38.1 +19.4 +22.4

Table 9. Increases in the score equal to 4 for “output correctness” during the validation stage in contrast to the baseline

stage.

According to the Chi-square (<0.05), Kolmogorov-Smirnov (<0.05) and the Mann-

Whitney U (<0.05) tests, the distributions and measures of central tendency of these this

item in assignment GA3 and the diagnostic test (GA5) are statistically different.

According to the Gamma positive value, scores in the validation phase were higher than

those obtained during the baseline phase.

As shown in the following table, the greater difference between the results obtained in

the different stages was on “program robustness”.

GA2 GA3 GA4
GA5

(diagnostic test)

4p 4p 4p 4p

+29.7 +46.7 +33.1 +28.6

Table 10. Increases in the score equal to 4 for “program robustness” during the validation stage in contrast to the

baseline stage.

According to the Chi-square (<0.05), Kolmogorov-Smirnov (<0.05) and the Mann-

Whitney U (<0.05) tests, the distributions and measures of central tendency of these this

item in all the assignments (i.e. GA2, GA3 and GA4) and the diagnostic test (GA5) are

statistically different. According to the Gamma positive value, scores in the validation

phase were higher than those obtained during the baseline phase.

In the light of the results obtained for “output correctness” and “program robustness”, we

can see that the use of the TILE approach was effective in order to improve students’

skills. The fact of providing learners with tests from the beginning may make them be

aware of the importance of thinking and evaluating different cases (e.g. look at what

happens when the input is incorrect), not only happy paths (i.e. they look at how the

program works under perfect and expected conditions). Thanks to the provision of tests,

learners get familiar with their format and finally they are able to write good tests on their

own. Generally speaking, “output correctness” and “program robustness” are two sides

of the same coin. When a program behaves correctly in all the cases (i.e. correct and

wrong input), then it is robust.

36

44

24 22
18 2018

14

4
0

0

10

20

30

40

50

Debugger Tools to check code conventions and styles

Not at all Only a little To some extent Rather much Very much

